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A High-Power W-Band (90-99 GHz
Solid-State Transmitter for High Duty
Cycles and Wide Bandwidth
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Abstract — A high average power W-band solid-state transmitter using a
2-diode and a 4-diode IMPATT power combiner has achieved over 1.89 W
and exceedingly versatile performance over a broad range of pulsewidths
and duty cycles with a.tunable bandwidth from 90 GHz to 99 GHz.
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1. INTRODUCTION

NEW GENERATION of millimeter-wave systems
will demand high-power solid-state W-band trans-
mitters [1]. Millimeter-wave tracking radars and active
seekers for precision guided munitions need small,
lightweight, reliable solid-state transmitters capable of op-
erating over a broad range of pulsewidths, duty cycles, and
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bandwidths. A transmitter has been developed that delivers
state-of-the-art power levels over broad ranges of these
parameters. Signal processing techniques that use a variety
of pulse codes (digital sequence and chirps) can be readily
employed with this transmitter.

Previous implementations of W-band transmitters have
been limited to pulsewidths less than 300 ns (typically 100
ns) and duty cycles less than 2 percent (typically 0.5
percent) [2], [3]. High average power levels in combination
with' signal processing are needed for longer detection
range and target classification. ’

In this development effort commercially available silicon
IMPATT diodes were combined in a unique modification
of a Kurokawa waveguide combiner designed for versatile
operation at W-band. A key element in achieving such a
versatile transmitter was the ability to adjust precisely the
circuit impedance that is seen by each IMPATT in the
power combiner. This paper will present this power-com-
biner design and the performance of this new solid-state
W-band transmitter. ‘

I1I. IMPATT PowEer COMBINER

Both 2-diode and 4-diode IMPATT power combiners
were developed for this transmitter. Fig. 1 graphically
shows the achievements for this development, while typical
performance for each combiner is summarized in Table I.
The combiner design is a modification of the Kurokawa
waveguide combiner. Both combiners used identical coaxial
tuning modules so that all internal parts are interchange-
able, thereby minimizing the design complexity and devel-
opment cost.

Fig. 2(a) shows several of these combiners assembled
and disassembled. The 4-diode combiner is a 6-diode com-
biner with the two coaxial bias lines near the sliding short
blocked off. The unique precision tuning elements, heat
sinks, and internal waveguide configuration are also shown.
Cooling, with a room-temperature water reservoir, was
used to maintain a relatively constant ambient temperature
for the 4-diode combiner. Cooling was not necessary, how-
ever, and was not used at all for single-diode units or the
2-diode combiner. '

The ability to adjust precisely the impedance seen by
each IMPATT led to very high combining efficiencies. The
IMPATT’s performed more efficiently in the combiners
than their individual operating data would predict. Com-
biner circuit losses are difficult to determine at these
frequencies but are probably less than 1 dB based on the
observed performance. No iris coupling or screw tuning
was used to match the reduced-height wavegunide of the
power combiner to the full-height waveguide of the mea-
surement network. A simple tapered transition built as part
of the combiner circuit was used for this interface. The
precision tuning elements are shown in Fig. 2(b).

A. IMPATT’s

The IMPATT’s used are Hughes CW silicon double-drift
diodes mounted on type IIA diamond (47106H-0120) and
specified at 200 mW per device with thermal coefficients of
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W-band IMPATT power-combiner performance.
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(a) Power combiners with internal structure and parts displayed.
(b) Precision tuning assembly details.

Fig. 2.

TABLE I
MILLIMETER-WAVE IMPATT POWER-COMBINER PERFORMANCE

Item Performance Achievements

2 Diode Combiner

4 Diode Combiner

Frequency*® 92 - 104 GHz 90 - 99 GHz

Power 300+ W Freerunning
400+ mW Injection
Locked at 10-13 4B Gain

1.89 W Free Running
and Injection
Locked at 13 dB
Gain

100 nsec to 4 Usec
(cw-1like operation)

Pulsewidths

Duty Cycles 1 - 35% 5 35%
>900 MHz

at 10-13 4B gain

Injection Locking >900 MHz
Bandwidth at 10-13 dB gain
*Mechanically tuned bandwidth
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6, = 30°C/W. These IMPATT’s were first tested for power
versus frequency with a variety of single-diode “fixed-
tuned” oscillators circuits including a sliding backshort.

Preselection data (power versus frequency) for diodes
121 and 122 are shown in Fig. 3. IMPATT’s with similar
characteristics were mounted as sets on the heat sink for
operation in both the 2-diode and 4-diode combiner. In the
combiners, the IMPATT’s were biased and the position of
the precision tuning elements were adjusted for maximum
output power and single-frequency operation.

A comparison of the individual diode operating char-
acteristics with the 4-diode combiner performance is shown
in Table I1. This comparison points out the higher efficien-
cy and improved performance achieved in the precision
tuned 4-diode combiner as compared with a single-diode
“fixed-tuned” circuit.

B. Modulators

The breadboard modulators were designed for versatile
performance. The modulator input was a TTL voltage
pulse exceeding 100 ns with duty cycles ranging from 1-50
percent. The modulator transformed this voltage pulse into
current pulses which could be continuously varied from
1-500 mA. A maximum of eight current pulses, all inde-
pendent of each other, were provided. A logic protection
circuit was included to shut down the transmitter in the
event of an IMPATT failure.

The power transistors of this circuit were approaching
their safe operating limits during high duty cycle. Occa-
sional transistor failures occurred with no loss of IM-
PATT’s. The modulator can be designed to use hybrids
that have demonstrated better reliability in other Raytheon
development efforts.

C. Precision Tuning

As a free-running oscillator, it is possible to induce a
“frequency jump” during the RF pulse. This undesirable
condition is the result of the motion of the characteristic
impedance of the IMPATT as it heats up in combination
with a loop in the circuit impedance of the waveguide. By
noting the extent of the frequency jump it is possible to
adjust the position of the Eccosorb terminations and the
sliding waveguide short to avoid such loop in the circuit
impedance and to achieve stable operation during both
short and long pulses.

The Eccosorb termination used in the precision tuning of
the power combiner can be “shaped” to vary the value of
its impedance. This is an additional complexity in the
matching technique, but a highly desirable feature when
properly understood. A long taper results in a greater
attenuation of unwanted frequencies as well as any RF
signal at the desired frequency that is not coupled to the
cavity. By decreasing the length of the taper (in the limit a
flat Eccosorb face will result), more energy is reflected
back toward the cavity. The proper positioning of a flat-
faced Eccosorb load will reflect the RF energy at the
desired frequency back into the cavity and thereby improve
the efficiency of the combiner circuit. The Eccosorb load is
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Fig. 3. Preselection data for IMPATT’s 121 and 122.

TABLE II
COMPARISON OF IMPATT PERFORMANCE BETWEEN THE
FIXeD-TUNED SINGLE-DIODE CIRCUIT AND THE 4-DIODE POWER

COMBINER
Co Vop RF |P, B
Vag Ave. |Peak [Igp|Pry [CW |[Pulsed|f, n
Device |Data v_|pf | v vimn| W mwi| we |GRz | % |ocw|OC
single
piode  |15.1}.93[18.3]|-—- |2684.90]240] — [93.2/4.89 {30.0| 169

«

241 l4-Diode

Combiner [N/A [N/A}16.7[17.51440|7.35]|~~-| 420* |90.0|5.72 30,0]<253

single

Diode 15.11,97(18.7 |-~ [2895.401250| —-— 93.614.63 [30.0] 184
«

242 14-Diode
Combiner [N/A |N/A[16.5]17.5]310]5.11|--—| 206* [90.0/579 30.01<184
single
Diode 15.0].95/18.6|-—~ ]272}5.061250| ——-~ 93.644.94 }30.0] 174
«

243 ]4-Diode
Combiner [N/A [N/A|16.7]17.5]500)8.35]|~——| 477* [90.0[5.71 |30.0}<285
Single
Diode 15.14.9718.4|~~= 1280[5.15}250} ~—o 93.314.85 {30.0) 176
«

244 |4-Dicde
combiner |N/A [N/A[16,.7[17.5/480|8.02|-~~| 457% |90.0[5.70 }30.0}<274

« 0.1 to 4.0 lsec pulsewidth
* estimated 1n proportion to current (Igp)

a complex impedance that will alter the circuit load imped-
ance at all frequencies as the Eccosorb is moved in the
coaxial line. The accurate positioning of precision tuning
element (see Fig. 2(b)) was vital to appropriately match
each individual IMPATT in the power combiner to achieve
high-power broad-band efficient operation.

An example of an improperly tuned circuit is seen in
Fig. 4 where many distinct and different frequencies are
present during each RF pulse. Such operation is eliminated
by adjusting the precision tuning assemblies to obtain the
proper circuit impedance and a coherent single frequency
signal from the IMPATT. When the IMPATT combiner is
operated as a free-running oscillator there may be both a
frequency chirp and amplitude chirp as the junction of the
diode changes temperature. The amplitude chirp can be
minimized by a more accurate matching of the IMPATT
impedance. The frequency chirp can be substantially miti-
gated by this tuning technique or eliminated when injection
locking is used.

The results of accurately tuning the IMPATT’s is seen in
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RF ENVELOPE
TIME SCALE = 500 nsec/DiV

RF SPECTRUM
FREQUENCY SCALE = 50 MHz/DIV

Fig. 4. Improperly tuned multifrequency 2-diode combiner.

A) RF ENVELOPE

B) CURRENT PULSE
VERTICAL = 100 mA/DIV
HORIZONTAL = 200 nsec/DIV

DUTY CYCLE = 10%
FREQUENCY = 96.78 GHz

RF SPECTRUM
VERTICAL = 10dB/DtVv
HORIZONTAL = 50 MHz/DIV

Fig. 5. Free-running operation of 2-diode power combiner.

Fig. 5. This spectrum indicates coherent operation in the
power combiner. Additional tuning is provided by a sliding
short within the reduced height waveguide. No ramping or
variation in the biasing current pulse amplitude was neces-
sary since both the undesirable frequency jumps and any
power amplitude- variation across the RF pulse could be
eliminated by proper tuning,.

III. 2-Diopr COMBINER

The 2-diode combiner achieved more than 300 mW as a
free-running oscillator. More than 400 mW was achieved
when this unit was injection-locked at gains between 7 and
15 dB. More than 300 mW was achieved for duty cycles
between 1 and 35 percent and pulsewidths ranging from
100 ns to more than 4 ps. No tuning of the combiner was
needed to accommodate these broad variations. By slight-
ly adjusting the precision tuning elements and the posi-
tion of the sliding short, this performance was obtaina-
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RF ENVELOPE
VERTICAL: UNCALIBRATED
HORIZONTAL: 500 nsec/DIV

FREQUENCY = 94.1 GHz
POWER OUTPUT = 350 mW
DUTY CYCLE = 26%

RF SPECTRUM
LOCKING GAIN = 13dB
HORIZONTAL: 50 MHz/DIV

Fig. 6. Injection locked 2-diode combiner.

ble over a frequency range from 92 GHz to 104 GHz. Such
versatility is a significant state-of-the art accomplishment.
At a 10-dB locking gain about l-percent instantaneous
bandwidth was achieved. No effort was made to optimize
this instantaneous bandwidth beyond 1 GHz. Duty cycles
in excess of 35 percent were not tested due to a decrease in
the current amplitude supplied by the breadboard modula-
tor circuits. It is expected that such performance will be
maintained at duty cycle well in excess of 50 percent.

An example of the performance of the 2-diode combiner
is shown in Figs. 4 and 6. The combiner is operating as a
free-running oscillator in Fig. 4. The detected RF envelope
closely resembles the current pulse, reproducing even the
ripples on the leading and trailing edges of the pulse. The
rise time of the RF envelope is less than the driving current
pulse because the IMPATT requires between 100 mA and
200 mA of current before it will begin to oscillate.

The RF spectrum is detected from the harmonic mixer
using a synthesized local oscillator at about 6 GHz. Fig.
4(b) shows a typical free-running spectrum. When the com-
biner is injection locked by a single IMPATT the output is
as seen in Fig. 6. Unstable operation is observed during the
rise time of the RF envelope due to the large' change in
temperature of the IMPATT that causes a rapid change of
the IMPATT characteristics during the first 30 to 50 ns of
oscillation. The injection-locked pulse is stable at a single
frequency for the rest of the 4 ps in this example. Higher
locking power with a more optimum matching to the
IMPATT will minimize this region of instability.

Many pairs of IMPATT’s were run in the 2-diode com-
biner. Diodes 121 and 122 were the first tested and gener-
ated over 300 mW with only minimum tuning and no
modification of the original circuit design.

1V. 4-Di1ope COMBINER

The 4-diode power combiner achieved a state-of-the-art
power in excess of 1.89 W of peak output power at 90 GHz
with duty cycles between 10 and 25 percent and pulse-
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Fig. 7. Peak power performance for mechanically-tuned range of 4-
diode IMPATT oscillator.

widths from 0.1 to 4 us. For duty cycles from 5 to 35
percent this unit generates over 1.3 W of peak power over
the mechanical tuning range of 90 to 99 GHz. Mechanical
tuning of 35 MHz/mil is easily obtained with just the
sliding short between 89.5 and 90.5 GHz with less than
0.9-dB variation in output power. Frequencies lower than
89.5 GHz were not tested for injection-locking bandwidth
since no locking source was available. The injection-locked
bandwidths were about 1 percent for 10 to 13-dB gain. Fig,
7 shows the operating range of this power combiner,

A comparison of the operating data observed in the
4-diode combiner and the data received for CW operation
of the individual IMPATT’s indicates that the typical
maximum junction temperature of each diode is slightly
higher in the 4-diode combiner at maximum drive levels
(see Table II). This estimate of the peak junction tempera-
ture is the maximum expected temperature at the end of
the RF pulse. The diode junction (principally the avalanche
region of the IMPATT) will heat up during the pulse and
cool off between pulses. The expected MTBF for constant
junction temperature less than 200°C is greater than
100 000 h. Since the estimated peak junction temperature
exceeds 250°C for only brief periods, the reliability for a
defect-free IMPATT should approach the expected MTBF.
Even though the IMPATT’s are operating at higher junc-
tion temperatures in the 4-diode combiner, the estimated
efficiency of each IMPATT is greater than the efficiency
seen in the single-diode test circuit.

Typical waveforms for the free-running 4-diode com-
biner output stage of the transmitter are shown in Fig. 8.
The RF envelope is flat since the amplitude chirp has been
eliminated by the precision tuning. The diodes are operat-
ing coherently at a single frequency. This was confirmed

experimentally in the measurement network by adjusting.

the cavity frequency meter through the RF envelope and
observing a uniform drop in the amplitude of the envelope
when this combiner was injection-locked. Slight instabili-
ties can be seen in the first 40 ns of the RF envelope due to
the initial heating of the IMPATT. The duration of these
[instabilities is decreased to less than 20 ns with injection-
locking. |

A typical voltage pulse for this combiner is also shown.
The voltage increases during this one us pulse from 15.8 V
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A} RF ENVELOPE
TIME SCALE = 200 nsec/DIV

B) TYPICAL CURRENT PULSE
VERTICAL SCALE=200 mA/DIV

A) VOLTAGE PULSE
DC OFFSET = 15 VOLTS
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B} CURRENT PULSE
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Fig.b 8. Typical waveforms in W-band 4-diode power combiner at
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Fig. 9. Waveguide measurement network.

to 17.5 V as the IMPATT heats up. The coherent output
power of the 4-diode combiner was obtained from 90 GHz
to 99 GHz by slightly adjusting the position of the Ecco-
sorb terminations and the waveguide sliding short.

A second 4-diode combiner achieved an output peak
power level of 1.03 W at 96.4 GHz with duty cycles
between 10 and 30 percent and pulse widths between 0.1 to
4 ps. The same versatility in tuning was also seen in this
combiner. One IMPATT had a biasing current much less
than the oscillation threshold current. It is believed that
this device acted like a tuning element.

V. MEASUREMENT NETWORK

The waveguide measurement network is shown in Fig. 9.
The insertion loss in each component of the network was
calibrated from 90 to 104 GHz. The insertion loss of
assembled network was correlated with the sum of the

losses in the components. A precision variable attenuator
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STAGE 1=104dB
STAGE 2=6 dB

Fig. 10. Block diagram of transmitter with stage gain indicated.

was adjusted to set the network loss at 30 dB for each
measurement. The final three-stage transmitter will gener-
ate a locked, stable output between 90 GHz and 99 GHz.
The estimated gain per stage is indicated in the block
diagram in Fig. 10.

VI

A three-stage W-Band solid-state transmitter has been
assembled using state-of-the-art IMPATT power combin-
ers. More than 1.89 W of peak output power was delivered
from the final stage 4-diode combiner. Extremely versatile
performance was achieved with coherent operation at
pulsewidths from 0.1 to 4 ps and duty cycles from 5 to 35
percent. The mechanical tuning bandwidth ranged from 90
to 99 GHz with up to 1-GHz injection gain within the
operating frequency range.

A variety of pulse coded millimeter-wave radar applica-
tions can now be addressed where digital or chirp coding,
and high-average power is required for long-detection
ranges and target classification.

CONCLUSIONS
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